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Abstract. The photocounts statistics for the optical radiation registered by a detector,
is considered. The ‘one-top’ property of the Mandel probability distribution of random
photocounts is proved provided the stochastic optical field is Gaussian. The noise low-intensity
electromagnetic field has the Gaussian property due to the central limit theorem.

1. Introduction

In the theory of low-intensity optical-field detection, the probability distributionsP(n) of a
random numbern of registered photons is studied. If the photons have a stochastic origin,
then the theory gives the following simple formula [1–3]:

P(n) = 1

n!
〈[�(a)]n exp(−�(a))〉 (1)

where

�(a) =
∫ T

0
|a(t)|2 dt. (2)

Here,T is the registration time,a(t) is a complex function of time—the coherent photon
amplitude at the timet . In the general case, the amplitudea(t) is a random function (i.e.
a random process from a mathematical view-point [4]). Therefore, the symbol〈.〉 in (1)
denotes the expectation connected with the probability distribution for the random function
a(t). The distribution character is mainly defined by the influence of random perturbations
when the electromagnetic field spreads in medium before detection. It may be diverse in
different physical situations. Therefore, in fact the formula (1) is very complicated despite
its illusory simplicity, and it may describe qualitatively diverse distributionsP(n). In
particular, the distributionsP(n) may have a different number of maxima (or, similarly,
different quantities of the numbersn for which the difference(P (n+ 1)− P(n)) changes
its sign). This characteristic is a very important qualitative property of probabilistic
distribution. The presence of several maxima points to some physical phenomena taking
place in a system described by probabilistic distribution. For instance, noise-induced phase
transitions in a physical system are described by means of a probabilistic distribution having
several maxima [5]. In contrast, if the distribution used, has only one maximum, then it
apparently corresponds to a trivial physical situation when the described random value is
almost definite and the maximum points to a stable state of the system. In the theory of
continuous probabilistic distributions, such a distribution is called unimodal [6]. The notion
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of unimodality may be applied to discrete probabilistic distributions. In this case, it will
play the analogous role, i.e. a unimodal discrete distribution describes a random physical
value having a stable, almost definite meaning. In particular, the probabilistic distributions
(1) describing photocounts of electromagnetic radiation not connected with information
transmission, is apparently unimodal. It is natural to set the problem of mathematical
justification of this physical conjecture in the case when the optical field is purely noise. To
formulate this problem exactly, it is necessary to specify mathematically the probabilistic
properties of noise. In this paper, we suppose that electromagnetic noise has a sufficiently
small intensity, therefore, we can neglect nonlinear effects when it is spread in a medium.
We also suppose that the detected noise is a sum of a large number of random small
summands at each instant. According to the central limit theorem, we may consider that
such a noise is a Gaussian random process [4].

In the present paper we solve the posed problem in the case when the processa(t) is
Gaussian and it has zero expectation. Earlier, we have solved this problem for a particular
case [7] contained in the theorem proved below. As for the photocount distribution, the
unimodality problem is an important theoretical one in view of the above mentioned reasons.
But, of course, the obtained result does not solve this problem entirely.

Besides the general theoretical importance, the property of unimodality has an applied
significance. For example, note the information transmission theory and, in particular, laser
communication theory [8, 9]. From the view-point of these theories, the unimodality of
photocount distributions is in order for the application of the ideal receiver theory [9, 10].
In this case, it is necessary to guarantee the uniqueness of the intersection point between the
photocount distributions of a purely noise optical field and an optical field transmitting a
signal. The unique intersection point is the threshold level of the ideal receiver, the existence
of which allows us to define the probabilities of mistaken recognition (signal registration or
signal loss).

In section 2, we define the known Karuhnen–Loève expansion [11–13] of an arbitrary
Gaussian process to study the optical noise under consideration, and also we give the well
known physical example for which our theorem is applicable. In section 3, we present a
mathematical definition of unimodal discrete probabilistic distributions. Further, in section 4,
we study the general form of characteristic functions of photocount distributions in the
Gaussian case. Finally section 5 is devoted to the proof of our main result.

2. Gaussian amplitudes

Let a(t) be a Gaussian process having zero average,〈a(t)〉 = 0. Based on the Karuhnen–
Loève theorem [11–13], we can state that for each fixed time interval [0, T ] the amplitude
a(t) may be presented as a superposition of some non-random mutually orthogonal modes
ψk(t), k = 1, 2, 3, . . . with random complex coefficientsαk which are Gaussian and
statistically independent,

a(t) =
∑
k

αkψk(t). (3)

Furthermore,<[αk] and=[αk] are statistically independent and identically distributed. Thus,
the functionsψk(t) and the coefficientsαk possess the following properties∫ T

0
ψk(t)ψ

∗
m(t) dt = δkm

〈αkα∗
m〉 = δkm 〈αkαm〉 = 0 k,m = 1, 2, 3, . . . (4)
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and there is the non-random numberλk > 0 for each random variableαk that the distribution
densityfk(α) of αk on a complex planeα is determined by the formula

fk(α) = (λk/π) exp(−λk|α|2). (5)

As mentioned in section 1, the optical field always has the Gaussian property and,
consequently, the amplitudea(t) has the properties (3)–(5), if it contains only a noise
component with sufficiently small intensity, due to which we can neglect nonlinear effects
when evolving the field. It takes place due to both the linearity of the field evolution
equations and the Gaussian property of a noise electromagnetic radiation source modelled
by white noise in time with a spatially distributed intensity. Since white noise is a Gaussian
random process, and random solutions of the linear field equations inherit the Gaussian
property of the source, then the set of solutions forms a random Gaussian process having
zero average.

The following particular example of noise electromagnetic field plays an important role
in quantum optics. It illustrates the above conclusion on Gaussian property of a low-intensity
noise optical field. Leta(t) be an amplitude of one-mode optical noise with the Lorentz
spectrum having the widthν > 0 [9, 14]. The functionsa(t) are the trajectories of the
complex stationary Ornstein–Uhlenbeck processa(t) [4]. These trajectories are subjected
to the Langevin equation

ȧ(t)+ νa(t) = ϕ(t) (6)

where the complex white noise

ϕ(t) = ϕ1(t)+ iϕ2(t)

〈ϕ1(t)ϕ2(t
′)〉 = 0 〈ϕj (t)ϕj (t ′)〉 = σδ(t − t ′) j = 1, 2

generates the optical noisea(t) according to the above-mentioned mechanism. Here
ϕj (t), j = 1, 2, are the statistically independent real white noises having the identical
intensities equal toσ . On the basis of the Langevin equations, they generate the stationary
real Ornstein–Uhlenbeck processesa1(t), a2(t) which compose the complex processa(t),
a(t) = a1(t) + ia2(t). The processa(t) is Gaussian due to the Gaussian property of the
white noiseϕ(t) and to the linearity of (6).

In accordance with the Karuhnen–Loève theorem, the numbersλk (the functionsψk(t))
in this example, are the characteristic numbers (the eigen-functions) of the integral operator
with the kernel coinciding with the correlation function〈a(t)a∗(t ′)〉 = (σ/ν) exp(−ν|t− t ′|)
[9, 15],

ψk(t) = λk

∫ T

0
〈a(t)a∗(t ′)〉ψk(t ′) dt ′ k = 1, 2, 3, . . . .

3. Discrete unimodal distributions

By analogy with the theory of continuous probabilistic distributions theory, let us introduce
the notion of discrete distributions unimodality.

Definition. The probability distributionP(n) of an integer random valuen ∈ Z is called
a unimodal one, if the function(P (n + 1) − P(n)) has no more than one change of sign,
i.e. there exists the numberm for which the following inequalities are valid,

P(n) > P(n− 1) if n 6 m and P(n) > P(n+ 1) if n > m.

The numberm is called the top of the distribution.
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The significance of the introduced notion, is connected with the fact that the unimodality
property characterizes the probabilistic distributions of the random photocountsn ∈ Z for
which any physical phenomena in principle (for example, nonlinear effects or noise-induced
phase transitions) are absent.

The introduced notion possesses the property of completeness which is analogous to
that of the unimodal class in continuous distributions theory [6].

Statement. Let PN(n), N = 1, 2, 3, . . . be a sequence of unimodal distributions in the
above sense. Let this sequence converge to the distributionP(n). Then the distribution
P(n) is also unimodal.

The proof of this statement follows immediately by passing to the limitN → ∞ in the
inequalities

PN(n) > PN(n− 1) if n 6 mN and PN(n) > PN(n+ 1) if n > mN

for each fixedn even if the topsmN do not converge to any value ofm (for mathematical
details, see [6]).

4. Characteristic function Ω(a)

As a rule, the distribution (1) is not calculated explicitly, i.e. it is impossible to fulfil
explicitly averaging over the probability distribution of the random processa(t). The
distributionP(n) determined by (1), (2) is very complicated even in the considered case,
when the amplitudea(t) is presented in the form described in section 2. As a rule, in this
case averaging is not fulfilled explicitly due to the fact that the numbersλk are not known
explicitly. But despite this, there exists an analytic expression of the characteristic function

F(λ) = 〈exp(−iλ�(a))〉 λ > 0

of the random value�(a) determined by (2), which is valid for any complex Gaussian
amplitudea(t). It is just the distinctive circumstance that permits us to prove the unimodality
of the distributionP(n) in the case under consideration. The expression takes the form:

F(λ) =
∞∏
k=1

(1 + iλ/λk)
−1 λk > 0. (7)

The formula (7) is obtained directly by substituting the expansion (3) in�(a), using (4)
and by averaging the function exp(−iλ�(a)), using the densities (5), i.e.

�(a) =
∫ T

0
|a(t)|2 dt =

∞∑
k=1

|αk|2

〈exp(−iλ�(a))〉 =
∞∏
k=1

∫
exp(−iλ|α|2)fk(α) d2α.

In the last formula, the integration in each factor is fulfilled on the complex plane ofα.
The probability distributionP(n) is expressed in terms ofF(λ) in the following way

P(n) = (in/n!)
dn

dλn
F (λ)|λ=−i .



Unimodality of photocount distribution 7109

5. Unimodality theorem

Now we can prove our main result.

Theorem. The probability distributionP(n) is unimodal, if the complex random amplitude
a(t) is a complex Gaussian process with zero expectation.

Proof. (A) The first step of our proof is its reduction to a simpler problem. We introduce
the random values�N determined by the characteristic functions

FN(λ) = 〈exp(−iλ�N)〉 =
N∏
k=1

(1 + iλ/λk)
−1. (8)

The functionsFN(λ) are characteristic in fact, because they are presented by the product of
the characteristic functions of exponential distributions [6],

(1 + iλ/λk)
−1 =

∫ ∞

0
exp(−iλs)gk(s) ds

gk(s) = λk exp(−λks) s > 0; k = 1, 2, . . . .
(9)

The probability distributions of the random values�N weakly converge to the probability
distribution of�(a), sinceFN(λ) → F(λ) asN → ∞ [6]. Therefore, the probability
distributions

PN(n) = 1

n!
〈�nN exp(−�N)〉 = (in/n!)

dn

dλn
FN(λ)|λ=−i (10)

converge toP(n) asN → ∞. Using the statement, we conclude that it is sufficient to
prove the unimodality of the distributionsPN(n),N = 1, 2, 3, . . ..

(B) The next step is the obtaining of the recursion relation between the distributions
PN(n). From (8), (9), we find that

FN(λ) =
∫ ∞

0
e−iλs(g1 ∗ . . . ∗ gN)(s) ds (11)

whereλ > 0 and the symbol∗ denotes the convolution of the densities,

(gm ∗ gk)(s) =
∫ s

0
gm(s − t)gk(t) dt

= λmλk exp(−λms)
∫ s

0
exp[(λm − λk)t ] dt m, k = 1, . . . , N. (12)

Equation (11) is valid, since convolution of densities passes to the product of the
corresponding characteristic functions. From (10), (11) it follows that

PN(n) = (1/n!)
∫ ∞

0
tne−t (g1 ∗ . . . ∗ gN)(t) dt.

Then using (12) and transposing the integration order, we have

PN(n; λ1 . . . λN) = (λ1 . . . λN/n!)
∫ ∞

0
exp[(λ2 − λ1)s1] ds1 . . .

. . .

∫ ∞

sN−1

exp[(λN − λN−1)sN−1] dsN−1

∫ ∞

sN−1

snN exp[−(1 + λN)sN ] dsN . (13)
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where we renamedPN(n) ⇒ PN(n; λ1 . . . λN), showing the dependence of distributions
PN(n) on variablesλ1, . . . , λN . Further, we get the recursion relation, having calculated
explicitly the internal integral in (13)

PN(n; λ1 . . . λN) = (λN/(1 + λN))

n∑
k=0

(1 + λN)
k−nPN−1(k; λ1, . . . , λN−1). (14)

Here, without loss of generality, we suppose that the valuesλ1, . . . , λN are different.
Equation (14) permits us to calculate recurrently the distributionsPN(n), using the explicit
expression ofP1(n; λ1)

P1(n; λ1) = λ1/(1 + λ1)
1+n. (15)

(C) At this step, we prove a statement which is the key for the proof. Hence, we
introduce the convolution operation for the discrete probability distributionsp(n), q(n), n =
0, 1, 2, 3, . . .. The operation which we shall denote by the symbol◦, assigns the new
probability distributionr(n) to each pairp, q. It is calculated by the formula

r(n) = (p ◦ q)(n) =
n∑
k=0

p(n− k)q(k) =
n∑
k=0

p(k)q(n− k)

for n = 0, 1, 2, . . ..

Lemma. Letq(n) be a unimodal probability distribution, i.e. the difference[q(n+1)−q(n)]
has no more than one change of sign. Then the probability distribution(p ◦ q)(n) is also
unimodal, ifp(n) is the geometric distributionp(n) = (1 − z)zn, 0< z < 1.

Proof of Lemma. The difference

(1 − z)−1(r(n+ 1)− r(n)) = zn+1q(0)+
n∑
k=0

zk[q(n+ 1 − k)− q(n− k)]

= zn
(
zq(0)+

n∑
k=0

z−k[q(k + 1)− q(k)]

)
has the same number of sign changes as the difference

(p(n))−1[r(n+ 1)− r(n)] = zq(0 + R(n)

where

R(n) =
n∑
k=0

z−k[q(k + 1)− q(k)].

The functionR(n) is unimodal, since the difference

R(n+ 1)− R(n) = z−(n+1)[q(n+ 2)− q(n+ 1)]

has no more than one change of sign. Therefore, there does not exist more than one value
m for which R(m) > −zq(0) andR(m+ 1) 6 −zq(0).

(D) If we introduce the geometrical distributions

pl(n) = λl(1 + λl)
−(1+n) λl > 0, l = 1, 2, . . . , N

then the recursion relation (14) is interpreted as

PN(n; λ1, . . . , λN) = (pN ◦ PN−1(.; λ1, . . . , λN−1))(n).

Further we repeat this recurrence and use the explicit expression (15) forP1(n; λ1), and as
a result, we have

PN(n) = (p1 ◦ p2 ◦ . . . ◦ pN)(n).
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The proof of the unimodality ofPN(n) for eachN = 1, 2, . . . is obtained now by means of
induction on numberN , using the statement of the lemma, taking into account the fact that
P1(n) monotonously decreases and, consequently, is unimodal.

The proof of the theorem follows from the statements A and D. �

6. Conclusion

In this note, we have shown that the photocount distributions (1), (2) of noise optical
field is characterized by unimodality. This property does not depend on the field intensity,
registration time and on-field generating mechanism, provided that the noise is of a Gaussian
type. The revealed unimodality is important from a theoretical view-point and for the
applicability of the theory of the ideal receiver to optical signal recognition. Usually,
the problem of photocount distribution unimodality is not discussed in optical signal
transmission theory. But it is implied silently that such a unimodality takes place. However,
physical situations exist in which the unimodality of photocount distribution is absent either
from the theoretical view-point [16] or from the experimental one [17, 18]. In this note, we
have ascertained only the sufficient conditions which guarantee the presence of unimodality.
Finally, it should be noted that photocount distribution unimodality in the presence of a
signal is also important for optical communication theory together with the unimodality of
purely noise optical field photocounts.
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